Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[diaquahexakis(dimethyl sulf-oxide- κO)cerium [(μ_{2}-hexacosaoxooctamolybdate)sodium]]

Li-Juan Chen, Can-Zhong Lu,* Quan-Zheng Zhang and Shu-Mei Chen

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: czlu@ms.fjirsm.ac.cn
Received 28 February 2005
Accepted 31 March 2005
Online 13 May 2005

The title compound, $\left\{\left[\mathrm{Ce}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{NaMo}_{8} \mathrm{O}_{26}\right]\right\}_{n}$, contains an infinite chain of β-octamolybdate moieties linked by Na^{+}ions, and further linked into a two-dimensional network by $\left[\mathrm{Ce}(\mathrm{DMSO})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3+}$ (DMSO is dimethyl sulfoxide) groups via hydrogen-bond interactions. The Ce and Na atoms are located on a twofold axis and an inversion centre, respectively.

Comment

Polyoxometalates are currently receiving increasing attention in the domain of solid-state material chemistry, owing to their intriguing structural and topological properties and their many potential applications in catalysis, biology, medicine, photochemistry and magnetism (Pope \& Müller, 1991; Pope, 1983). In the past decade, chemists have made great efforts in the design and synthesis of new polyoxometalates. To find suitable subunits and then link them into one-, two- or even threedimensional extended networks in appropriate ways remains a great challenge. Recently, a series of octamolybdatesupported complexes with multi-dimensional frameworks has been synthesized by hydrothermal methods (Hagrman et al., 1997, 1998; Wu et al., 2002). To the best of our knowledge, only three octamolybdate-supported compounds with one- or twodimensional extended structures have so far been reported as being synthesized via a direct route, using $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$ or $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{4}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]$ as the starting materials (Qin et al., 2004; Chen et al., 2004a,b). We have succeeded in obtaining the title novel octamolybdate-supported compound having a twodimensional framework, $\left\{\left[\mathrm{Ce}(\mathrm{DMSO})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{NaMo}_{8} \mathrm{O}_{26}\right]\right\}_{n}$ (DMSO is dimethyl sulfoxide), (I), which was also prepared via a direct route, but using $\mathrm{Na}_{2} \mathrm{MoO}_{4}$ as the Mo source. This is the first reported such octamolybdate-based compound with an infinitely extended structure to be synthesized by applying this 'one-step' method. It is also the first case of $\mathrm{Mo}-\mathrm{Na}$
bimetallic oxide chains linked into a two-dimensional network via hydrogen-bonding interactions between β - $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ units and coordinated rare earth ions.

Compound (I) consists of an infinite anionic chain framework built up of $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ entities linked via Na^{+}ions, and eight-coordinated (six DMSO and two water molecules) Ce atoms as charge-compensating cations (Fig. 1). The Ce atom occupies a special position across a twofold axis, and the Na atom lies on an inversion centre at $\left(\frac{3}{4}, \frac{1}{4}, \frac{1}{2}\right)$.

As shown in Fig. 2, the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ moiety is built up of eight edge-sharing MoO_{6} octahedra and displays the characteristic β-octamolybdate arrangement, which contains two $\mu_{5}-\mathrm{O}$ atoms, O 13 and $\mathrm{O} 13^{\text {iii }}$ [symmetry code: (iii) $-x+\frac{3}{2}$, $\left.-y+\frac{3}{2},-z+1\right]$. The $\mathrm{Mo}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Mo}-\mathrm{O}$

Figure 1
A molecular drawing of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (i) $-x+1, y$, $-z+\frac{3}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$; (iii) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$; (iv) $x, y+1$, z.]
and $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ angles among the octamolybdate units are similar to those in other β - $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ complexes (Luo et al., 2003; Yang et al., 2002; Hagrman \& Zubieta, 2000). All Mo sites possess octahedral coordination geometry with different degrees of distortion and exhibit a +VI oxidation state, according to extensive bond-valence-sum calculations (Brown \& Altermatt, 1985; Brese \& O'Keeffe, 1991). Each $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ unit forms covalent $[\mathrm{Na}-\mathrm{O}=2.426$ (2)-2.445 (2) \AA] or weak $[\mathrm{Na}-\mathrm{O}=2.820(2)-2.841(2) \AA]$ interactions with Na^{+} through eight terminal O atoms in opposite directions, thus forming a sandwich-like structure.

The coordination environment around the Ce centre is shown in Fig. 1. Each Ce^{3+} ion is coordinated by eight O atoms, of which six are from DMSO ligands and two from aqua ligands.

It is noteworthy that strong hydrogen-bond interactions exist in the solid-state structure of (I), and these might play an important role in the crystallization of (I). Each coordinated water molecule on the Ce atom forms two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to a μ_{2}-bridging and a terminal O

Figure 2
A polyhedral representation of the infinite chain in (I). All C and H atoms have been omitted for clarity.

Figure 3
A packing diagram for (I), viewed along the c axis. Broken lines indicate hydrogen bonds. Displacement ellipsoids are shown at the 30% probability level. All H atoms have been omitted for clarity, except for those engaged in hydrogen bonding.
atom from the adjacent $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]_{n}$ chain. Therefore, the structure of (I) is finally extended into a two-dimensional network by strong hydrogen bonds (Fig. 3).

The backbone framework of (I) is similar to that of $\left[\mathrm{NaLa}\left(\beta-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}\right)(\mathrm{DMF})_{7}\right]_{n}$ (DMF is dimethylformamide; Chen et al., 2004a), (II), although in that compound, the $\left[\mathrm{La}(\mathrm{DMF})_{7}\right]^{3+}$ moiety is covalently bound to the infinite onedimensional chain.

Experimental

$\mathrm{Na}_{2} \mathrm{MoO}_{4}(0.964 \mathrm{~g}, 4 \mathrm{mmol})$ was dissolved in a mixture of water $(5 \mathrm{ml})$ and dimethyl sulfoxide $(10 \mathrm{ml})$, and then a solution of CeCl_{3} (0.67 mmol) in water $(2 \mathrm{ml})$ was added dropwise. The resulting solution was adjusted to about pH 3 with 10% hydrochloric acid. After stirring for about 15 min , the mixture was filtered and the filtrate was kept in air at ambient temperature. Orange crystals of (I) were separated from the mother liquor after one week (yield 45%, based on Ce).

Crystal data

$\left[\mathrm{Ce}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{NaMo}_{8} \mathrm{O}_{26}\right]$	
$M_{r}=1851.43$	$D_{x}=2.584 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=22.7811(7) \AA$	Cell parameters from 6634
$b=9.2121(2) \AA$	reflections
$c=22.8913(6) \AA$	$\theta=3.0-27.5^{\circ}$
$\beta=97.829(2)^{\circ}$	$\mu=3.34 \mathrm{~mm}^{-1}$
$V=4759.2(2) \AA^{3}$	$T=130.2(1) \mathrm{K}$
$Z=4$	Prism, yellow
Z	$0.22 \times 0.21 \times 0.11 \mathrm{~mm}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Ce1-O14	2.434 (2)	Na1-O1	2.841 (2)
Ce1-O15	2.445 (2)	Mo1-O5	1.7060 (19)
Ce1-O16	2.4630 (19)	Mo1-O1	1.707 (2)
Ce1-O17	2.517 (2)	Mo1-O6	1.9152 (18)
$\mathrm{Na} 1-\mathrm{O} 2$	2.4260 (19)	Mo1-O12	1.9430 (18)
$\mathrm{Na} 1-\mathrm{O} 3$	2.4453 (18)	Mo1-O9 ${ }^{\text {i }}$	2.3109 (18)
Na1-O4	2.830 (2)	Mo1-O13	2.4077 (17)
O14-Ce1-O15	72.27 (7)	O7-Mo2-O13	161.09 (8)
O14-Ce1-O16	74.25 (7)	$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{O} 13$	92.68 (8)
O15-Ce1-O16	146.49 (7)	O6-Mo2-O13	77.75 (7)
O14-Ce1-O17	137.83 (7)	O8-Mo2-O13	74.56 (7)
O15-Ce1-O17	149.53 (7)	O3-Mo3-O9	106.05 (9)
O16-Ce1-O17	63.72 (7)	O3-Mo3-O8	101.18 (8)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 2$	180	O9-Mo3-O8	97.85 (8)
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 3$	75.47 (6)	O3-Mo3-O10	99.97 (8)
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 4$	108.15 (6)	O9-Mo3-O10	96.78 (8)
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 4$	68.53 (6)	O8-Mo3-O10	149.76 (7)
$\mathrm{O} 2-\mathrm{Na} 1-\mathrm{O} 1$	71.40 (6)	O3-Mo3-O13	95.68 (8)
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 1$	108.80 (6)	O9-Mo3-O13	158.26 (8)
O5-Mo1-O1	105.91 (10)	O8-Mo3-O13	78.32 (7)
O5-Mo1-O6	102.22 (9)	O10-Mo3-O13	78.30 (7)
O1-Mo1-O6	99.12 (9)	O11-Mo4-O4	105.53 (10)
O5-Mo1-O12	100.87 (9)	O11-Mo4-O12	101.98 (9)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 12$	98.43 (9)	O4-Mo4-O12	100.48 (8)
O6-Mo1-O12	145.78 (7)	O11-Mo4-O10	100.39 (8)
O5-Mo1-O13	160.74 (8)	O4-Mo4-O10	96.91 (8)
O1-Mo1-O13	93.32 (8)	O12-Mo4-O10	146.69 (7)
O6-Mo1-O13	75.01 (7)	O11-Mo4-O13	162.14 (8)
$\mathrm{O} 12-\mathrm{Mo} 1-\mathrm{O} 13$	74.84 (7)	O4-Mo4-O13	92.08 (8)
$\mathrm{O} 7-\mathrm{Mo} 2-\mathrm{O} 2$	105.99 (9)	O12-Mo4-O13	77.12 (7)
O7-Mo2-O6	101.14 (8)	O10-Mo4-O13	74.05 (7)
$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{O} 6$	100.76 (8)	Mo1-O1-Na1	126.74 (10)
O7-Mo2-O8	99.92 (8)	$\mathrm{Mo} 2-\mathrm{O} 2-\mathrm{Na} 1$	134.29 (10)
$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{O} 8$	96.21 (8)	Mo3-O3-Na1	131.35 (9)
O6-Mo2-O8	148.03 (7)	$\mathrm{Mo4-O} 4-\mathrm{Na} 1$	128.43 (10)

Symmetry codes: (i) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$; (ii) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2} 7-\mathrm{H} 17 B \cdots \mathrm{O}^{\mathrm{iii}}$	$0.84(4)$	$2.32(4)$	$2.974(3)$	$136(5)$
$\mathrm{O}^{\mathrm{iii}}$	$0.84(2)$	$2.00(2)$	$2.758(3)$	$151(4)$

Symmetry code: (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$.

Data collection
Rigaku Mercury CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
$T_{\text {min }}=0.524, T_{\text {max }}=0.693$
16875 measured reflections
5365 independent reflections
5248 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-29 \rightarrow 27$
$k=-11 \rightarrow 8$
$l=-28 \rightarrow 29$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0302 P)^{2}\right. \\
& \quad+15.179 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=1.59 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.84 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.055$
$S=1.05$
5365 reflections
290 parameters
H atoms treated by a mixture of independent and constrained
refinement

The water H atoms were located in a difference Fourier map and refined with restrained $\mathrm{O}-\mathrm{H}$ distances approximately equal to 0.84 (1) \AA and $\mathrm{H} \cdots \mathrm{H}$ distances approximately equal to 1.4 (1) $\AA . \mathrm{H}$ atoms bonded to C atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$, and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXL97; software used to prepare material for publication: SHELXL97.

This work was supported by the ' 973 ' Programme of the MOST (grant No. 001CB108906), the National Natural Science Foundation of China (grant Nos. 90206040, 20425313, 20333070 and 20303021), the Natural Science Foundation of Fujian Province (grant Nos. 2002 F015 and 2002 J006) and the Chinese Academy of Sciences.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1236). Services for accessing these data are described at the back of the journal.

References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Chen, S.-M., Lu, C.-Z., Yu, Y.-Q., Zhang, Q.-Z. \& He, X. (2004a). Acta Cryst. C60, m549-m550.
Chen, S. M., Lu, C. Z., Yu, Y. Q., Zhang, Q. Z. \& He, X. (2004b). Inorg. Chem. Comтип. 7, 1041-1044.
Hagrman, D., Sangregorio, C., O’Connor, C. J. \& Zubieta, J. (1998). J. Chem. Soc. Dalton Trans. pp. 3707-3709.
Hagrman, D. \& Zubieta, J. (2000). Solid State Chem. Cryst. Chem. 3, 231-240.
Hagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. \& Haushalter, R. C. (1997). Angew. Chem. Int. Ed. Engl. 36, 873-876.
Luo, J. H., Hong, M. C., Wang, R. H., Shi, Q., Cao, R., Weng, J. B., Sun, R. Q. \& Zhang, H. H. (2003). Inorg. Chem. Commun. 6, 702-705.
Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. New York: Springer.
Pope, M. T. \& Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-48.
Qin, C., Wang, X. L., Qi, Y. F., Wang, E. B., Hu, C. W. \& Xu, L. (2004). J. Solid State Chem. 177, 3263-3269.
Rigaku (2002). CrystalClear. Version 1.35. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wu, C. D., Lu, C. Z., Zhuang, H. H. \& Huang, J. S. (2002). Inorg. Chem. 41, 5636-5637.
Yang, W. B., Lu, C. Z. \& Zhuang, H. H. (2002). J. Chem. Soc. Dalton Trans. pp. 2879-2884.

